

OUTLINE

- 1. Trends
- 2. Gaps
- 3. Policy and Challanges

3.53.52.7

3.5
3.5
2.7
7.0
9.0

2010 2050 3.5 6.3 3.5 2.7 7.0 9.0

2010 2050

- Urban 3.5 6.3
- Rural 3.5 2.7
- Σ 7.0 9.0

2010 2050

- Urban 3.5 6.3 +80%
- Rural 3.5 2.7 23%
- Σ 7.0 9.0

Main growth areas: South (Africa) and East (China)

But still a large population in rural areas

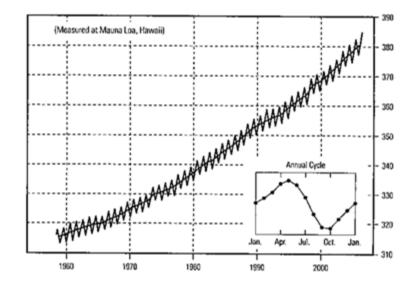
	<u>2010</u>	<u>2050</u>		
<u>U</u>	3.5	6.3	+80%	
<u>R</u>	3.5	2.7	-23%	
<u>Σ</u>	<u>7.0</u>	<u>9.0</u>		

Trend 1 has impact on <u>Climat Change</u>

	<u>2010</u>	<u>2050</u>		Т
				i
<u>U</u>	3.5	6.3	+80%	C
<u>R</u>	3.5	2.7	-23%	E
<u>Σ</u>	7.0	<u>9.0</u>		

Trend 1 has impact on Climat Change <u>Econ. Growth</u>

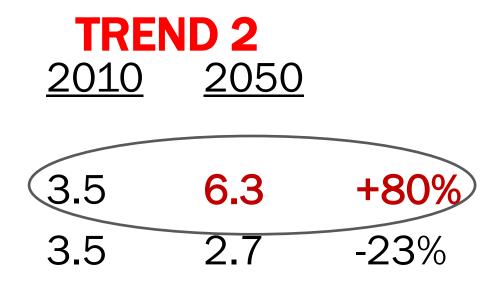
	<u>2010</u>	<u>2050</u>		٦
				i
<u>U</u>	3.5	6.3	+80%	(
<u>R</u>	3.5	2.7	-23%	E
<u>Σ</u>	7.0	<u>9.0</u>		<u> </u>


Trend 1 has impact on Climat Change Econ. Growth Inequality

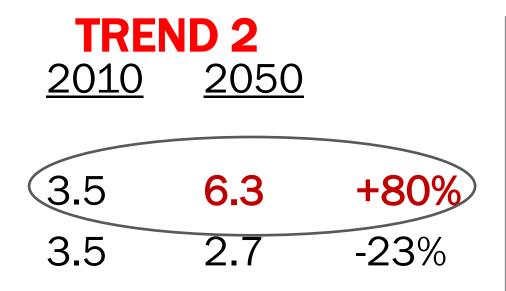
TREND 2: SOON UNSTOPPABLE

Atmospheric concentrations of carbone dioxide and other greenhouse gases

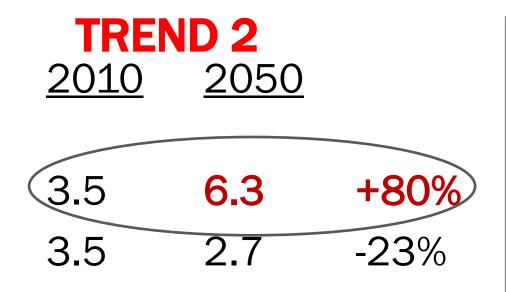
Year	Ppm	Temp
1770	280	
2012	430	+1
2050	550	+2
2100	>1300	+5

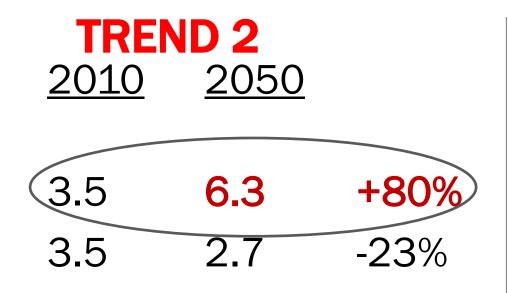

PPM=Particle per million (metric tons)

TREND 2


Cities account for **50% of population 75%** of total global **energy** demand and

produce 80% of our CO2 emissions driving climate change.




Almost 3 billion in cities requires **drastic changes** in <u>Transportation,</u>

Almost 3 billion in cities requires **drastic changes** in Transportation, <u>Energy S&D</u>

Almost 3 billion in cities requires **drastic changes** in Transportation, Energy S&D <u>Housing</u>

Almost 3 billion in cities requires drastic changes in Transportation, Energy S&D Consumption Housing Production Methods

TREND 2: GOOD EXAMPLES

The group of C40 contries working on leadership of climate change and global warming

accounts for 18% of global GDP and 10% of global carbon emissions

Large potential for green tech innovations, and good govarnance

TREND 3: INNOVATION AND GROWTH, Y=X + Z

Y=	Lab prod	Lab prod growth
X =Innovation ^a	0.21***	0.03***
Z = Other ^b	See below	See below

a) Including physical capital, human capital, size, trade, industry

b) 360 000 USPTO patents,18 industries, in 11 0ECD-countries 1991-2005

18

TREND 3: INNOVATION AND GROWTH, Y=X + <u>W</u>+Z

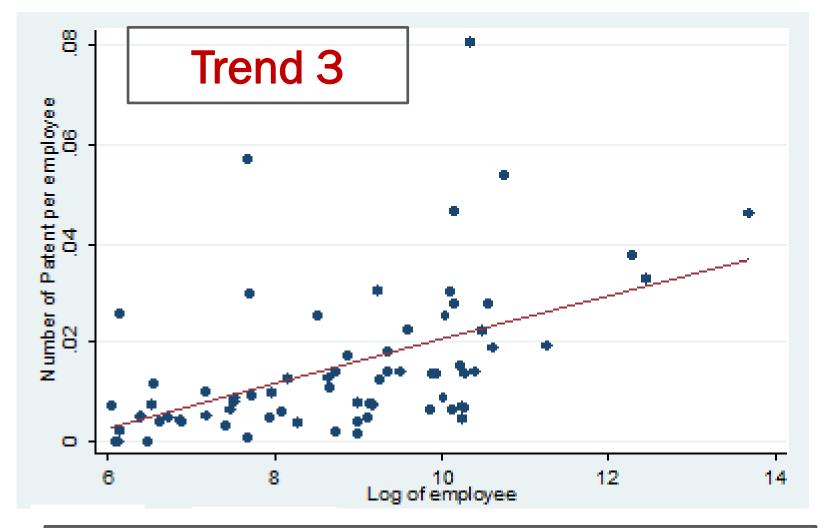
Average rate of return to R&D in the US over the years from 1958 to 2007 is **22%** and the indirect rate of return to R&D is **37%**. (**W**)

Technological spillover effects have become more important over time (Wolff, 2012) Why?

TREND 3: INNOVATION AND GROWTH, Y=X + <u>W</u>+Z

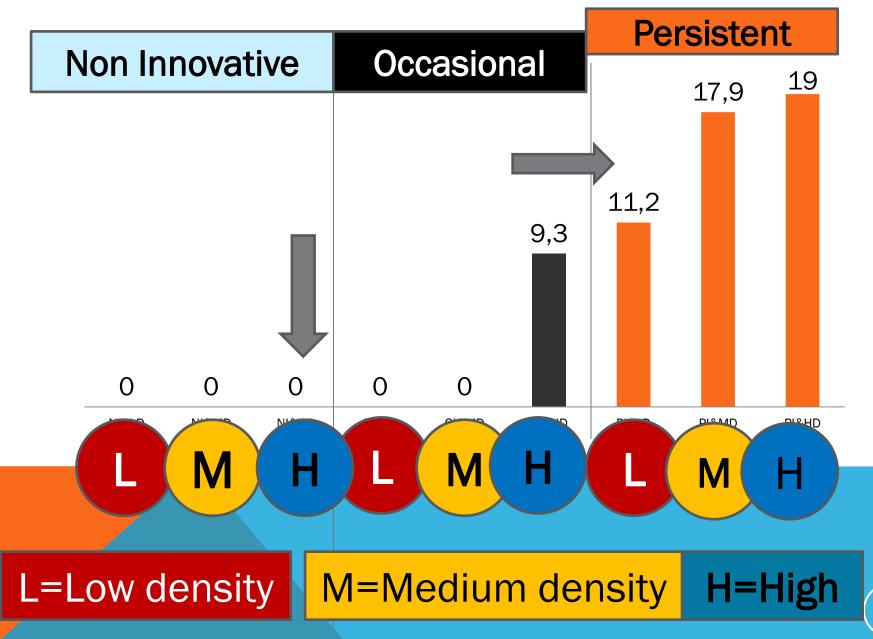
Average rate of return to R&D in the US over the years from 1958 to 2007 is 22% and the indirect rate of return to R&D is 37%.

Technological spillover effects have become more important over time (Wolff, 2012) IT? Decreases the


importance of proximity for spilloves

TREND 3: INNOVATION AND GROWTH, Y=X + <u>W</u>+Z

Average rate of return to R&D in the US over the years from 1958 to 2007 is 22% and the indirect rate of return to R&D is 37%.


Technological spillover effects have become more important over time (Wolff, 2012)

Face-to face? Increases the importance of proximity for spillovers?

Population density and innovativeness (number of patent application per employee) in 72 functional labour market regions in Sweden 1997-2008. The correlation (R2) is 0.20

TREND 4: PRODUCTIVITY, INNOVATION AND DENSITY

23

GAP 1: URBAN AND RURAL

<u>Trend 3:</u> Growing role of knowledge, innovation and spillovers increases the income gap between city-population (firms and employees) and others

- And the larger opportunities attract people and firms to the cities

GAP 2: WINNERS AND LOOSERS IN THE THE CITIES Plato 427-347 b.c.

Cities are always characterised by a larger gap beween rich and poor people than other places due to its own inter-dynamics

Contemporary world:

Differences in education, knowledge, employability, innovativeness, integration, networks, markets share, monopoly position etc. are continuously selecting winners from loosers

POLICY CONCLUSIONS AND CHALLENGES

1.Global warming

Physical infrastructure for green cities

C40 group of countries working on a leadership of climate change and global warming account for 18% of global GDP and 10% of global emissions

-and attracts skilled workers!

POLICY CONCLUSIONS AND CHALLENGES

2. Innovation

and almost 3 billion more living in cities

Infrastructure for creating and diffusing knowledge in milieus with many face-to face contacts and close connections between firms and people.

POLICY CONCLUSIONS AND CHALLENGES

3. Inequality

and almost 3 billion more living in the cities The invisible hand is not *the* solution. Policy interventions have strategic role (education, skills, employability).

