

Adaptation policies to climate change in the Mediterranean region

C. D. Pérez-Blanco, FEEM & CMCC

QUELLES POLITIQUES D'ADAPTATION AU CHANGEMENT CLIMATIQUE ET DE PRESERVATION DE L'EMPREINTE ECOLOGIQUE DE LA PLANETE? Rabat, 2 May 2016

Why adapting?

- > The Mediterranean basin is one of the most vulnerable regions to CC
 - > CC interrelated consequences
 - > precarious socio-economical conditions
 - > fragile political systems
 - > Large ecological footprint

> Δ °C in the Mediterranean may be higher than globally. Consequences:

- > Sea level rise
- > Extreme events: floods, droughts, heatwaves, fires

> Socioeconomic impacts: direct (lives, infrastructures), indirect
(income, migration)

> Climate change may threaten lives, economic growth and ecosystem services in the area

> Mitigation is necessary

> Yet, surface temperature is projected to rise over the 21st century under all IPCC emission scenarios

IRES Meeting - 2 May 2016

Climate change in the Mediterranean

IPCC, 2013: Annex I: Atlas of Global and Regional Climate Projections. In: Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

Temperature

Precipitation

RCP4.5 2016-2035 April-September

-50

-40

-30

-20

-10

0

10

20

30

40

50

5.

Economic repercussions of CC: sea level rise

> Flooding and erosion -> infrastructural disruptions > 158 major oil/gas/LNG/tanker terminals + 71 operating nuclear reactors on the coast -> indirect impacts

Source: Standardi et al., 2015 & Brown et al., 2013

Sea level rise economy-wide impacts on Italy, in % of GVA, Italian regions (NUTS2)

	A1B	A1FI	A1T	A2	B1	B2
Piedmont	2.32	2.80	1.84	3.43	1.71	1.80
Aosta Valley	2.51	3.03	1.99	3.65	1.85	1.95
Lombardy	1.80	2.18	1.42	2.61	1.32	1.39
Trentino Alto Adige	1.51	1.86	1.17	1.85	1.07	1.14
Veneto	-5.13	-5.94	-4.53	-12.06	-4.41	-4.41
Friuli V. G.	-2.01	-2.94	-1.63	-5.41	-1.48	-1.56
Liguria	0.27	0.30	0.17	0.89	0.13	0.15
Emilia Romagna	-11.93	-13.95	-9.53	-14.54	-8.72	-9.33
Tuscany	-2.44	-3.38	-1.60	-2.70	-1.41	-1.57
Umbria	1.81	2.18	1.45	2.73	1.36	1.42
Marche	0.36	0.54	0.24	0.93	0.22	0.23
Lazio	-2.04	-2.72	-1.36	-2.19	-1.15	-1.32
Abruzzi	1.11	1.39	0.84	1.91	0.47	0.81
Molise	1.15	1.40	0.91	1.95	0.82	0.88
Campania	-0.72	-1.06	-0.18	-0.55	-0.18	-0.18
Apulia	-1.71	-2.09	-1.31	-1.66	-1.18	-1.29
Basilicata	1.05	1.26	0.84	1.69	0.78	0.82
Calabria	-1.45	-1.34	-1.53	-1.27	-1.54	-1.54
Sicilia	-0.43	-0.34	-0.52	-0.14	-0.55	-0.54
Sardinia	-0.85	-1.71	-0.74	-1.18	-0.72	-0.80
Italy	-1.51	-1.83	-1.20	-2.16	-1.11	-1.17

Economic repercussions of CC: droughts

> Water crises are perceived as the most relevant global risk in terms of impact
> Irrigation represents 70% of total water withdrawals worldwide
> CC will reduce supply. Demand for crop irrigation is expected to increase by more than 40% up to 2080

> Absolute scarcity is a reality already> What are the consequences of irrigation restrictions?

Target: 50 hm³ (2.7% of initial concession)

Euro/m3

Target: 100 hm³ (5.5% of initial concession)

Target: 150 hm³ (8.2% of initial concession)

Target: 200 hm³ (10.9% of initial concession)

NPV of agricultural losses (in EUR/m3) in SE Spain for alternative water conservation targets (50-300 M m3)

Target: 250 hm³ (13.7% of initial concession)

Target: 300 hm³ (16.4% of initial concession)

Source: Pérez-Blanco and Gutiérrez-Martín (work in progress)

Economic repercussions of CC: floods

> Account at the global level for the greatest share of natural disasters' inflicted damage (EAD 6.4 billion Euro)

> Growing population and capital density, unsustainable development, inappropriate land use and climate change

- > EAD estimations by 2100: 14–21.5 billion Euro, up to 97 billion Euro
- > Rarely the accounting of flood losses includes indirect economic impacts
- > Indirect losses can represent 19-22% of direct losses

Po river 2000 flood extension (in blue) in Northern Italy, represented using Corine Land Cover map 2000. Red is mainly constructed area while yellow is agricultural land.

Source: Carrera et al., 2015

How to adapt?

> CC and weather extremes challenges traditionally addressed through hard engineering:

- > Dykes, reservoirs (floods)
- > Drilling wells, desalination (droughts)
- > Efficiency improvement (e.g. heating and cooling demand)
- > **Success** in harnessing environment for economic growth
- > In the face of CC, this model is unsustainable
 - > Financial crisis increases opportunity costs
 - > Environmental costs are overcoming financial benefits
 - > CC demands ever-increasing investments
 - > Some of the solutions have backfired (e.g. irrigation modernization in Mediterranean areas)

Box 1: Irrigation modernization in Spain

> Total investment (2002-2008): 7 368
M€, of which:

- > 60.1% public
- > 39.9% private
- > Expected water savings: 3 662 hm3/year (*double efficiency, halve water* use)

 > Evidence: water consumption and use may have increased in some areas
 > Why?

- >Lower water returns (Hydrological Paradox)
- > The shift to more water intensive crops and the increase in use in dry periods (*Jevons' Paradox*)

Box 2: Drill rush in Malta

- > Water resources / inhabitant < 1000 m3</p>
- > Total demand: 50.5 M m3
 - > 33.5 M m3 from groundwater (mostly free)
 - > 17 M m3 is desalinated (expensive, limited to drinking water)
- > Renewable GW supply: 25 M m3
- > GW deficit: 8.5 M m3/year
 - > 12.5 M m3/year according to recent estimates
- > Challenges:
 - > Irrigation is free and rapidly depleting aquifers (19 M m3/year)
 - > Drinking water: expensive (up to 5€/m3), subsidized, loss-making

The costs of drinking water							
Year	M&O Costs (M€)	Cost recovery (%)	Deficit (M€)				
2005	55.89	52.0%	26.85				
2006	54.71	53.1%	25.66				
2007	51.88	56.7%	22.49				
2008	56.16	64.7%	19.84				

Box 3: Idle desalination in SE Spain

- > 2000-2010: 400 M€ in the construction and modernization of desalination plants in the Segura River Basin (SRB)
- > 2012: 500 M€ loan to bailout the public utility
- > Additional 700 M€ for further investments
- > Production cost around 1€/m3

- > Subsidized prices: 0.36 €/m3
- > Conventional water prices: from 0 (GW) to 0.22 €/m3 (water transfer)
- > Desalination plants can supply 1/6 of annual water withdrawals

> Being used below 20% of their capacity (1/30)

> Desalinated water is an expensive buffer stock

Box 4: Flood management in Italy – coupling defenses and emergency responses

> Flood related losses, 2008-2012: 2.2 billion €

- > Flood losses are on the rise
 - > Climate change
 - > Urban development (soil sealing + exposure)
- > No insurance
- > Budgetary constraints

> Flood prevention investments fall short of the mark

> State aid 2008-2012: 1.2 billion €

> The strategy leads to underestimation of potential risks

Greening infrastructure

> Flexible, effective, and no-regret GI integrate human activities with the natural processes and ecological systems

- > Contribute to CC adaptation & provide ancillary benefits (ES)
 - > Afforestation against landslides and runoff
 - > Wetlands and sustainable drainage systems to prevent floods
 - > Dunes and salt marshes against storm surges
 - > Green roofs against heat stress and heavy precipitation
 - > Etc.

> Uptake is low

- > Low visibility of benefits (*externalities*)
- > Costs (including byproducts, e.g. fire risk)
- > Insufficient evidence and experience

Managing demand

> CC and socioeconomic dynamics are overcoming existent <u>protection</u> <u>barriers</u>

> This is mostly a **crisis of governance**

> Technical CC and disaster risk management developed to a very large extent...

> ...while social, political, institutional and economic aspects are still treated in an incipient form, with major problems persisting

> Can we promote resilient and adaptive behavior?

> **Economic instruments**: align individual decisions with collectively agreed goals

- > Complementary to engineering
- > Not panaceas –case sensitive
- > Streamed into the policy mix to solve CC-related problems (not revenue raising –although this is a welcome byproduct)

Box 5: Pricing – a panacea?

"[...] water-pricing policies provide adequate incentives for users to use water resources efficiently, and thereby contribute to the environmental objectives of this directive" (EC, 2000)

> Higher prices reduce use and raise revenue

Тах	Current revenues	2016	2020	2025
Water consumption tax	300	1,858	4,186	4,094
Waste water tax	Not found	197	275	275
Pesticides tax	12	545	1053	1074
Total		2,600	5,514	5,443

Potential additional revenues for water-related taxes in Italy, 2016-2025, M€

Source: Eunomia and Aarhus University, 2014

> At what cost? Negative impacts on employment and margins

- > This 'tradeoff' conditions the adequacy of pricing
- > Also transaction costs
- > Example: Irrigation water pricing in the Po River Basin, Italy

Box 5: Pricing – a panacea?

Box 6: Flood insurance

> EU flood losses 2000 – 2012: €4.2 billion/year; By 2050: 23 billion €/year

> Likely to create **budgetary trouble**

> One-in-250-year floods and winter storms can downgrade credit rating and affect creditworthiness and recovery

> 50% insurance coverage can reduce impacts on growth by 40% (vs. no insurance)

> Concern: Solvency

> Risk based pricing insurance promotes Disaster Risk Reduction (i.e. adaptation)

> Also reduces the cost of public prevention/compensation

> Caveats:

- > Affordability: Not everyone can pay the price
- > Equity: Who's responsible for risk?

> Public Sector intervenes (through PPPs) to balance both sides, with different outcomes:

- > France CatNat: Solidaristic approach (flat rate)
- > UK FloodRe: Price incentives based on risk & 'tax bands'

Box 7: Shaking hands for river restoration

 > Reservoirs (hydropower generation) modify flood frequency and magnitude
 > Proliferation of macrophytes (aquatic plants)

> Environmental impact (landscape, navigation)

> Also financial (obstruct water intakes, cleaned mechanically –costly)

> Reservoirs now used to reproduce the floods of the past (in autumn & spring)

> 95% macrophyte removal rate

> Costs: 109 000 €/year (daily revenue:
 250 000€) – cheaper than mechanical removal

> Voluntarily accepted by the operator

> Enhances its social responsibility strategy

Concluding remarks

> Economic instruments complement supply policies

- > Both are preconditions for a successful policy mix
- > Putting all together –be aware of:
 - > Institutional setup the peril of transaction costs
 - > Policy mix
 - > Sequencing and spillovers
- > And remember: there are **no silver bullets**
 - > You better learn from other experiences...
 - > ...but it is the context what ultimately determines the solution

Thanks for your attention

IRES Meeting – 2 May 2016

Annex

The Jevons' Paradox (I)

Water use (W) reacts to improvements in the irrigation efficiency (E) in three ways:

- Less water required to obtain the same products as before (W becomes closer to effective water, EW)
- The cost of applying water (*c(E)*) with more sophisticated irrigation devices is more expensive (*c'(E)>0*). This increases the water application cost and reduces water use
- Water becomes more productive and farmers will probably be willing to use more water

Effect over W

The Jevons' Paradox (II)

The answer depends on the sign of $\frac{\partial W}{\partial E}$ Given a constant water price: $\frac{\partial P}{\partial W}dW + \frac{\partial P}{\partial E}dE = 0$ then $\frac{dW}{dE} = -\frac{\frac{\partial P}{\partial E}}{\frac{\partial P}{\partial W}}$ And differentiating the water demand function (P = f(EW)E - c(E)): $\frac{dW}{dE} = -\left(\frac{W}{E} + \frac{f(EW)}{f'(EW)E^2} - \frac{c'(E)}{f'(EW)E^2}\right)$ Multiplying both sides by $\frac{E}{W}$: $\epsilon_{W,E} = -1 - \frac{1}{\epsilon_{f,E}} + \left(\frac{\epsilon_{c,E}}{\epsilon_{f,E}}\right) \left(\frac{c(E)}{P + c(E)}\right)$

Where:

- $\epsilon_{W,E}$ is the efficiency elasticity of water demand:

$$\epsilon_{W,E} = \frac{dW}{dE} \frac{E}{W}$$

- $\epsilon_{f,E}$ is the efficiency elasticity of *f* (*EW*):

$$\epsilon_{f,E} = \frac{\partial f(EW)}{\partial E} \frac{E}{f} = \frac{f'(EW)}{f(EW)} EW < 0$$

- $\epsilon_{c,E}$ is the efficiency elasticity of c (E):

$$\epsilon_{c,E} = \frac{\partial c(E)}{\partial E} \frac{E}{c(E)} = c'(E) \frac{E}{c(E)} > 0$$

Corso Magenta 63, 20123 Milano - Italia - Tel +39 02.520.36934 - Fax +39 02.520.36946 - www.feem.it

The Jevons' Paradox (III)

Corso Magenta 63, 20123 Milano - Italia - Tel +39 02.520.36934 - Fax +39 02.520.36946 - www.feem.it